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1Questions from various sources including Neapolitan and Jiang,
“Contemporary AI”, CRC Press (2012)
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Basic Probability I

1. You are given a set of 13 squares and circles, 9 of which are
coloured black and the rest are coloured white.
Each object also has either the letter “A” or “B” on it. There
are: 2 black squares with an A, 4 black squares with a B and
1 black circle with an A. Of the remaining, there is 1 white
square and 1 white circle each with an A. Here is a
diagrammatic representation:

Let Black denote the set of black objects, White denote the
set of white objects, Square denote the set of square objects,
A the set of objects with an “A” and so on. Assuming all
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Basic Probability II

objects are equally likely (the so-called Principle of
Indifference):

(a) What is P(A)?
(b) What is P(A|Square)?
(c) Are A and Square independent?
(d) Are A and Black independent?
(e) Are A and Square conditionally independent given Black?
(f) Are A and Square conditionally independent given White?
(g) The Law of Total Probability gives us: P(A) = P(A,White) +

P(A,Black). Verify that the law holds in this case.
(h) Using a probability-tree, calculate P(Black|A).
(i) Using Bayes’ Rule, calculate P(Black|A)
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Basic Probability III

2. There are two urns (Urn1 and Urn2). Urn1 has 2 red marbles
and 2 blue marbles. Urn2 has 1 red and 3 blue marbles.2 The
urn labels are now covered and a coin is flipped to select an
urn. Having selected an urn, we draw a marble from the urn.
The marble is red. What is the probability that the urn
selected was Urn1?

3. In a typical English summer, the probability that the
temperature falls below 10 degrees Celsius is 0.4. In that case,
the English cricket team wins with probability 0.75. The
probability that the temperature is between 10 and 30 degrees
Celsius is 0.4, in which case the English team wins with
probability 0.65. The probability that the temperature is
greater than 30 degrees is 0.2 and in that case, the English
team wins with probability 0.55. You have just received an
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Basic Probability IV

SMS saying the English team has won. What is the
probability that the temperature was below 10 degrees?

2Some of these exercises are from M. Cargal, “Discrete Mathematics for
Neophytes”.
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Probability Distributions I

4. The probability mass function of a discrete r.v. is as follows:

p(X = x) =

{
1/3 x = −1, 0, 1

0 otherwise

What is µX = E (X )?

5. You are told Var(X ) = E [(X − µX )
2]. What is Var(X ) for the

r.v. in the above?

6. Repeat the calculations for the following mass function:

p(X = x) =

{
1/3 x = −2, 0, 2

0 otherwise

Why does the variance increase?
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Probability Distributions II

7. Let X be the random variable denoting the number of dots
that come up on the throw of a six-sided die. What is E (X )?
(Are store-bought dice uniform?)

8. Let X be a random variable denoting the number of successes
in n i.i.d. Bernoulli trials, each with probability p of success.
What is E (X )?

9. Let X be an exponential random variable with pdf
f (X = x) = λe−λx (x > 0). What is E (X )? What is E (X 2)?
Recall: integration by parts:∫

udv = uv −
∫

vdu
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Probability Distributions III

10. A continuous real-valued variable has a power-law p.d.f. if
p(x) = Cx−α (α > 0). In fact, this function diverges as
x → 0: so how can it be a p.d.f. ?

11. Find an expression for C in the (modified) p.d.f. in the
previous question.

12. Find the expected value for the random variable having the
(modified) power-law p.d.f.

13. Power-laws with α ≤ 2 have no finite mean. This means that
as we start taking more and more samples from such
populations, we will start to see the mean diverge. How can
this happen?

14. Similarly show that for α ≤ 3, there is no finite variance.
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Maximum Likelihood I

15. You have a sample of n observations x1, x2, . . . , xn from data
that appear to fit a binomial distribution
with parameters N and p. Assuming N is known, derive the
maximum likelihood estimate for p in terms of N, n, and the
xi .

16. Let x1, x2, . . . , xn be a sample of observations from a Poisson
distribution with parameter λ. Find the maximum likelihood
estimate of λ in terms of the xi and n.

17. Let x1, x2, . . . , xn be a sample from an exponential
distribution, which has a density function f (X = x) = λe−λx

(x > 0). Derive a maximum likelihood estimate of λ in terms
of the xi and n.
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Maximum Likelihood II

18. Let x1, x2, . . . , xn be observations from a normal distribution
with parameters µ and σ2. Derive maximum likelihood
estimates of µ and σ2.
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Logistic Regression I

Simple limear regression deals with the problem of fitting a line
Y = a+ bX for a set of points (X1,Y1), (X2,Y2), . . . , (Xn,Yn).
The least-squares estimates of b and a are:

b =
∑

(xiyi )/
∑

xi
2

where xi = (Xi − X ) and yi = (Yi − Y ); and

a = Y − bX

This extends naturally to weighted simple linear regression, in
which each point has a weight wi . The least-square estimates of b
and a are then:

b =
∑

wi (xiyi )/
∑

wixi
2
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Logistic Regression II

where xi = (Xi − Xw ) and yi = (Yi − Y w ); and

a = Yw − bXw

The means are now weighted averages:

Xw =

∑
wixi∑
wi

Y w =

∑
wiyi∑
wi

Clearly, if the wi = 1, the ordinary linear regression results.

19. We will use weighted linear regression to build a linear model
for the log-odds of Y when Y takes on one of two values: 0
and 1. For any value of X = Xi , the odds of Y (actually the
odds of Y |X = Xi ) is the ratio
P(Y = 1|X = Xi )/P(Y = 0|X = Xi ). It is therefore simply
the ratio of the number of Y = 1 entries for X = Xi to the
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Logistic Regression III

number of Y = 0 entries for X = Xi . This procedure is simple
logistic regression.
Here is a partially completed table about a dataset:

i ii iii iv v vi vii
X Y Total P(Y = 1|X ) Odds(Y ) LogOdds(Y )

0 1
28 4 2
29 3 2
30 2 7
31 2 7
32 4 16
33 1 14

(a) Complete the table. (b) Using the total for each Xi ,Yi as
the weight wi , obtain the weighted linear regression line
LogOdds(Y ) = a+ bX . (c) What is the predicted probability
for X = 31?
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Simple Bayes I

20. The following table represents data collected by some
machine-learning researchers at Wimbledon.

Day Outlook Temperature Humidity Wind Play
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No
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Simple Bayes II

From Bayes’ Rule (with some simplification of notation):

P(Yes|Sunny ,Cool ,High,Strong) =
P(Yes)P(Sunny ,Cool ,High, Strong |Yes)

P(Sunny ,Cool ,High, Strong)

∝ P(Yes)P(Sunny ,Cool ,High, Strong |Yes)

P(No|Sunny ,Cool ,High,Strong) =
P(No)P(Sunny ,Cool ,High, Strong |No)

P(Sunny ,Cool ,High, Strong)

∝ P(No)P(Sunny ,Cool ,High,Strong |No)

Assume that the attributes Outlook, Temperature, Humidity
and Wind are conditionally independent of each other given
the value of the target attribute Play.
Using the data recorded, estimate the probability of play on
Day 15, which has the following forecast:

〈Outlook = Sunny ,Temperature = Cool ,Humidity = High,Wind = Strong〉
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