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Preliminaries - Population and Sample

e A population includes all of the elements from a set of data.
e A sample consists one or more observations drawn from the population.

e A measurable characteristic of a population, such as a mean or standard

deviation, is called a parameter; but a measurable characteristic of a sample
is called a statistic.
o Parameter is fixed number.

o Statistic is a random variable as it depends upon the particular random sample. This is used
to estimate the parameter.



Preliminaries - Estimator

An estimator is a statistic that estimates the value of some parameter of the
population.

For example, the sample mean(X) is an estimator for the population mean, p.
Since it is a statistic, it is a random variable.

f(D) and f(D=d) used interchangeably. Similarly, P(D) and P(D=d).



Preliminaries - Binomial Distribution

A binomial distribution can be thought of as simply the probability of a success or
failure outcome in an experiment or survey that is repeated multiple times.
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Binomial Model

Suppose there are five kinds of bags of lollies from Russell and
Norvig):
1. 10% are hy: 100% cherry lollies
20% are hy: 75% cherry lollies + 25% lime lollies
40% are h3: 50% cherry lollies + 50% lime lollies
20% are hy: 25% cherry lollies + 75% lime lollie
10% are hs: 100% lime lollies

Then we observe lollies drawn from some bag:
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What kind of bag is it? What flavour will the next lolly be?

To answer these questions, we will first have to fit a model to
the data
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Bags have a fraction 6 of cherry lollies

We are therefore dealing with binomial models (cherry vs lime
lollies) in which we do not know 6. We will take this set of
models to be characterised by the parameter 0

Now we unwrap N lollies, and find ¢ and N — ¢ limes. We will
have to assume that these are i.i.d. (independent, identically
distributed) observations

What can we say about the probability of observed data, using
the binomial distribution as our theoretical model. This is:

Prob(c cherries and (N — ¢) limes o« 6°(1 — §)(N=¢)

Question: For what value of 6 will this probability be highest?



Likelihood

Given the parameters, the probability that sample data is generated.

Likelihood — P(X4, Xo, ... X,|0)

Probability — P(0| X1, X5, ... X,,)



The Maximum Likelihood Estimator (MLE)

Let X7, X9, X3, ..., X,, be a random sample from a distribution with a
parameter 6. Given that we have observed X; = 21, X9 = 29, --+, X,, = x,, a

maximum likelihood estimate of €, shown by éML is a value of @ that maximizes
the likelihood function
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A maximum likelihood estimator (MLE) of the parameter 6, shown by @ML is a
random variable @ML—@ML(Xl,Xg, -, Xn) whose value when X; =z,
X9 = xy, -+, X,, = x,, is given byHML



Why use MLE?



Ans: Find maximum by differentiating and setting first
differential to 0. Actually easier to differentiate log(P) and set
that to O:

log(P) = L(P) = clogf + (N — c)log(1— 0)

Differentiating w.r.t. 6 and setting this to zero:

dl(P) ¢ N-c _ 0
6 1-6

which gives § = ¢/N

This is the “Maximum Likelihood Estimate” for 6 (L(P) is
called the likelihood function)

(Seems sensible, but causes problems with 0 counts! But
more on that later.)




Linear Gaussian Model

Recall the regression model:
P(YIX)

= N
Fitted 'y _ o, bX
- Line
True
Regression
E(Y)= a+pX

The probability model being assumed is:
Yi=a+pXi+e

where e; are distributed with mean 0 and variance ¢2. In
addition, we are further assuming that the frequency

distribution of the e; can be approximated using a Gaussian
distribution



That is, we are assuming that P(Y;|X;) is a Gaussian
distribution with mean o + 8X; and variance o?:

1 (Y;—F(X;))?
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P(Yi|Xi) =

(Where f(X,‘) = & ﬁX,')

Assume we are given a set of points
(x1,y1), (%2, ¥2), - - . (Xn, ¥n). Then the probability of obtaining
these points is:
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This is the likelihood function. Maximising this, will require
minimising >_;"(y; — f(x;))?, which is the same as finding the
least squares estimate



So, the least squares estimators for the regression line are the
same as the maximum likelihood estimators for that linear
Gaussian model (with i.i.d. data, and fixed variance)



The MLE of the population mean is the sample mean. The
sample mean is statistically unbiased, so the ML principle
results in an unbiased estimate of the population mean

However, the MLE of the variance is not unbiased (that is, the
ML estimator is biased). So, it is not always the case that the
ML principle results in an estimate with 0 bias. So, what can
we say about ML estimators?

As the sample size gets large, the variance of the MLE tends

to the CR bound v,,j,. So, for all unbiased estimators (that is,
all estimators that have b = 0), the MLE will have the lowest
MSE (for large samples)



Poisson Distribution

Let x1,X5,...,Xx, be a sample of observations from a Poisson
distribution with parameter A. Find the maximum likelihood
estimate of \ in terms of the x; and n.
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L(\) = P(D|\) = I, P(Xi|A)
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Exercise

Let x1,X2,...,X, be a sample from an exponential
distribution, which has a density function f(X = x) = Ae= ™
(x > 0). Derive a maximum likelihood estimate of \ in terms

of the x; and n.
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Exercise

Let x1,x2,...,Xx, be observations from a normal distribution
with parameters 1 and 02. Derive maximum likelihood
estimates of 1 and o°.
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We need to solve the following maximization problem

magcl(y,oz;xl,...,x,,>
uc*

The first order conditions for a maximum are
8 & -
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Exercise - Biased Coin

e N=10
e 7 heads and 3 tails in 10 tosses
e Assume data comes from Binomial(N, p)

Find MLE of p.



Exercise - Multiple Experiment with a biased coin

Three experiments each of 10 trials
1st Experiment: 7 heads and 3 tails
2nd Experiment: 6 heads and 4 tails
3rd Experiment: 8 heads and 2 tails

Find MLE of p.



Exercise - Biased Die

e {X}be N i.id trail outcomess.t, N=n_+n,....

e Assume X~Multinomial(N, 6. +86, .... +6)

Find MLE of 6.

N

+n

P(ni,ng,...,ng) =

n1!n2! c.

n n
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Thank You



Resources

StatQuest: Probability vs Likelihood

StatQuest: Maximum Likelihood

StatQuest: Maximum Likelihood For the Normal Distribution
MIT OCW Maximum Likelihood Estimates

UWashington Maximum Likelihood Estimates

* - read only what is relevant


https://www.youtube.com/watch?v=pYxNSUDSFH4
https://www.youtube.com/watch?v=XepXtl9YKwc
https://www.youtube.com/watch?v=Dn6b9fCIUpM
https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading10b.pdf
https://courses.cs.washington.edu/courses/cse546/15au/lectures/lecture01_intro.pdf

