Tutorial on

Optimization

BITS F464 Machine Learning

8th February 2020
optimise: $f(x)$ (a)
optimise: $f(x)$
OR subject to: $a \leq x \leq b$

(b)

- Here optimise means maximise or minimise
- The optimisation problem in (a) is called unconstrained optimisation, and in (b) is called constrained optimsation
- If a constrained optimisation problem has no solution, then constraining the value of x may give a solution
- For example, $f(x)=x$ has no finite maximum (or minimum). But if $a \leq x \leq b$ then the maximum (and minimum) are well-defined

Feasible Solutions

Values of x satisfying the constraints are called feasible solutions. The constrained optimisation problem is to find the the optimal value of $f(x)$ amongst feasible solutions
floptimise: $f(x)$
(b)

Global and Local Optimum

If for some feasible x

$$
\begin{array}{ll}
f(x) \leq f\left(x^{\prime}\right) & x \text { is called a global minimum } \\
f(x) \leq f\left(x^{\prime}\right) \text { for } x^{\prime} \in N b d(x) & \text { local minimum }
\end{array}
$$

Global and Local Optimum

If for some feasible x

$$
\begin{array}{ll}
f(x) \leq f\left(x^{\prime}\right) & x \text { is called a global minimum } \\
f(x) \leq f\left(x^{\prime}\right) \text { for } x^{\prime} \in N b d(x) & \text { local minimum }
\end{array}
$$

Constrained Optimum != Global Optimum

Convex Functions

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \quad(0 \leq \alpha \leq 1)
$$

Strictly Convex Functions

A function is strictly convex if the line segment is strictly above the function (Ex. a linear function is not strictly convex)

$$
\forall x_{1} \neq x_{2} \in X, \forall t \in(0,1): \quad f\left(t x_{1}+(1-t) x_{2}\right)<t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)
$$

Examples of Convex Functions

Examples of convex functions are:

- Linear functions of the form $a x+b$ (for all $a, b)$
- Power functions of the form $|x|^{p}$ for $p>=1$
- Exponential functions of the form $e^{a x}$ (for all a)
- Norms like $|x|$ or $|x|_{2}$
- $\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is convex

Prove that they are convex!

Important Results

- For a convex function, any local minimum is also a global minimum
- For a strictly convex function, if there is a local minimum then it is a unique global minimum

Multivariate Unconstrained Optimisation

Goal: Optimize $u=f(\mathbf{x})$
The results from the calculus require counterparts to the first and second-differentials

Gradient

This gradient, usually denoted ∇f, is the vector:

$$
\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{k}}\right)
$$

This is also denoted in matrix notation as:

$$
\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{k}}\right]^{T}
$$

Gradient - Example

$$
\begin{aligned}
& \text { Let } f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2} x_{2}-x_{2}^{2} x_{3}^{3} \text {. What is } \nabla f \text { at } \\
& \mathbf{x}_{0}=[1,2,3]^{T} ?
\end{aligned}
$$

Gradient - Example

Let $f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2} x_{2}-x_{2}^{2} x_{3}^{3}$. What is ∇f at $\mathbf{x}_{0}=[1,2,3]^{\top}$?

$$
\begin{gathered}
\nabla f=\left[\begin{array}{c}
6 x_{1} x_{2} \\
3 x_{1}^{2}-2 x_{2} x_{3}^{3} \\
-3 x_{2}^{2} x_{3}^{2}
\end{array}\right] \\
\left.\nabla f\right|_{\mathrm{x}_{0}}=\left[\begin{array}{c}
12 \\
-105 \\
-108
\end{array}\right]
\end{gathered}
$$

This is the direction of greatest increase of f at the point \mathbf{x}_{0}

Hessian

The Hessian matrix \mathbf{H}_{f} associated the function $f(\mathbf{x})$ is the matrix $\left.\mathbf{H}\right|_{f}$

$$
\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right] \quad(i, j=1 \ldots n)
$$

We are usually interested in the value of the Hessian matrix at some value \mathbf{x}_{0}. This is denoted by $\left.\mathbf{H}\right|_{f}, \mathbf{x}_{0}$

If the second partial derivatives of a function f are continuous at \mathbf{x}_{0} then the Hessian $\left.\mathbf{H}\right|_{f}, \mathbf{x}_{0}$ will be symmetric

Hessian - Example

$f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2} x_{2}-x_{2}^{2} x_{3}^{3}$
What is the Hessian for f at \mathbf{x}_{0} as above?

Hessian - Example

$f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2} x_{2}-x_{2}^{2} x_{3}^{3}$
What is the Hessian for f at \mathbf{x}_{0} as above?

$$
\left.\mathbf{H}\right|_{f}=\left[\begin{array}{ccc}
6 x_{2} & 6 x_{1} & 0 \\
6 x_{1} & -2 x_{3}^{3} & -6 x_{2} x_{3}^{2} \\
0 & -6 x_{2} x_{3}^{2} & -6 x_{2}^{2} x_{3}
\end{array}\right]
$$

Substituting the values for x_{0} we get:

$$
\left.\mathbf{H}\right|_{f}, \mathbf{x}_{0}=\left[\begin{array}{ccc}
12 & 6 & 0 \\
6 & -54 & -108 \\
0 & -108 & -72
\end{array}\right]
$$

Negative Definiteness

A symmetric matrix is negative definite if and only if all of its principal minors of even order are positive and all of its principal minors of odd order are negative.

Negative Definiteness

Let:
$A_{1}=\left|a_{11}\right| A_{2}=(-1) \times\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right| A_{3}=(-1)^{2} \times\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right| \ldots$
Or in general:

$$
A_{n}=(-1)^{n-1} \operatorname{det}(A)
$$

A is negative definite iff $A_{1}, A_{2}, \ldots, A_{n}$ are all negative and negative semi-definite iff there exists some $r<n$ s.t. the A_{i} for $i \leq r$ are negative, and are 0 for $i>r_{\text {. }}$.

If $f(\mathbf{x})$ has both ∇f and second partial derivates defined in some ϵ-neighbourhood around \mathbf{x}^{*} and $\left.\nabla f\right|_{\mathrm{x}} ^{*}=\mathbf{0}$ and $\left.\mathbf{H}\right|_{f}, \mathbf{x}^{*}$ is negative-definite then $f(\mathbf{x})$ has a local maximum at \mathbf{x}^{*}

Is the Hessian obtained earlier negative, or semi-negative, or neither at \mathbf{x}_{0} ?

Is the Hessian obtained earlier negative, or semi-negative, or neither at \mathbf{x}_{0} ?

Answer. Since $A_{1}=12$ for the Hessian, it is not negative or semi-negative at x_{0}.

$$
\nabla f=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right) \text { and } \quad \nabla^{2} f=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right)
$$

Numerical Optimization

In general, analytical expressions for optimal values of a multivariate function $f(\mathbf{x})$ are hard to obtain

Gradient Descent

Gradient Ascent

1. Start with some guess \mathbf{x}_{0}
2. Determine subsequent vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ using the update formula:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\left.\eta^{*} \nabla f\right|_{\mathbf{x}_{k}}
$$

where η^{*} is the value of a scalar η that results in the maximum value for $f\left(\mathbf{x}_{k}+\left.\eta \nabla f\right|_{\mathbf{x}_{k}}\right)$ (often, η^{*} is just taken to be a small constant)
3. Stop when $\mathbf{x}_{k} \approx \mathbf{x}_{k+1}$

This is a greedy search in the direction of maximal increase. Replacing the + sign by - in the update formula will result in a search in the direction of maximal decrease. The resulting procedure is gradient descent

Convex functions and Gradient Ascent/Descent

In case of convex functions, finding Local Optima is enough as it is also the global optima.

Exercise

Show that at every interation, gradient ascent at a point \mathbf{x}_{k} moves in the direction of greatest increase of $f\left(\mathbf{x}_{k}\right)$

Exercise

Show that at every interation, gradient ascent at a point \mathbf{x}_{k} moves in the direction of greatest increase of $f\left(\mathbf{x}_{k}\right)$

The rate of change of $f(\mathbf{x})$ at \mathbf{x}_{k} in the direction of any unit vector \mathbf{U} is:

$$
\left.\nabla f\right|_{\mathbf{x}_{k}} \cdot \mathbf{U}=|\nabla f||\mathbf{U}| \cos \theta
$$

This is a maximum when $\cos \theta=1$ or $\theta=0$. That is, \mathbf{U} is in the same direction as $\left.\nabla f\right|_{\mathbf{x}_{k}}$. Any scalar multiple $\left.\eta^{*} \nabla f\right|_{\mathbf{x}_{k}}$ is in this direction.

Exercise

Maximise $z=f\left(x_{1}, x_{2}\right)=-\left(x_{1}-\sqrt{5}\right)^{2}-\left(x_{2}-\pi\right)^{2}-10$.
Find the maximum for the function f above, using gradient ascent.

$$
\mathbf{x}_{0}=[6.597,5.891]^{T}
$$

Exercise

Maximise $z=f\left(x_{1}, x_{2}\right)=-\left(x_{1}-\sqrt{5}\right)^{2}-\left(x_{2}-\pi\right)^{2}-10$.
Find the maximum for the function f above, using gradient ascent.

$$
\mathbf{x}_{0}=[6.597,5.891]^{T}
$$

$x_{1}=\sqrt{5}$ and $x_{2}=\pi$. The value f at this point is
-10, which a maximum for f

Lagrange Multipliers

Constrained Multivariable Optimization

Maximize $f(x, y)$
Subject to $g(x, y)=0$
minimise: $f(\mathbf{x})$ subject to:
$g_{1}(\mathbf{x}) \leq 0$
$g_{2}(\mathbf{x}) \leq 0 \quad$ OR

$$
g_{m}(\mathbf{x}) \leq 0
$$

(a)
maximise: $f(\mathbf{x})$
subject to:
$g_{1}(\mathbf{x}) \leq 0$
$g_{2}(\mathbf{x}) \leq 0$
$g_{m}(\mathbf{x}) \leq 0$
(b)

Provided some conditions on the partial derivatives of f and g are satisfied, then it can be shown that if for some \mathbf{x}^{*} :

$$
-\left.\nabla f\right|_{\mathrm{x}} ^{*}=\lambda_{i} \nabla g_{i}\left(\mathrm{x}^{*}\right)
$$

then \mathbf{x}^{*} is a solution the optimisation problem (a) (1.

The Lagrange multiplier theorem roughly states that at any stationary point of the function that also satisfies the equality constraints, the gradient of the function at that point can be expressed as a linear combination of the gradients of the constraints at that point, with the Lagrange multipliers acting as coefficients.

Similarly if:

$$
\left.\nabla f\right|_{\mathrm{x}} ^{*}=\lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)
$$

then \mathbf{x}^{*} is a solution to the optimisation problem (b)

We define the Lagrangian for (a) as the function

$$
L\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{m}\right)=f(\mathbf{x})-\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})
$$

Then:

$$
\nabla L=\nabla f(\mathbf{x})-\sum_{i} \lambda_{i} \nabla g_{i}(\mathbf{x})
$$

It is clear that for all points \mathbf{x}^{*} s.t. $\left.\nabla L\right|_{\mathbf{x}} ^{*}=\mathbf{0}$
$\left.\nabla f\right|_{\text {mathbfx }} ^{*}+\sum \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)=0$ and \mathbf{x}^{*} is a solution to (a)

Similarly, the Lagrangian for (b) is:

$$
L\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{m}\right)=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})
$$

and a similar result follows
$\nabla L=\mathbf{0}$ is a system of $n+m$ equations in $n+m$ unknowns:

$$
\begin{array}{lr}
\frac{\partial L}{\partial x_{i}}=0 & (i=1,2, \ldots n) \\
\frac{\partial L}{\partial \lambda_{j}}=0 & (j=1,2, \ldots, m)
\end{array}
$$

Example

Maximise $f\left(x_{1}, x_{2}, x_{3}\right)=-\left(x_{1}+x_{2}+x_{3}\right)$ subject to the constraints:

$$
\begin{aligned}
x_{1}^{2}+x_{2} & \leq 3 \\
x_{1}+3 x_{2}+2 x_{3} & \leq 7
\end{aligned}
$$

We first bring this into the standard form for the constraints:
maximise: $z=f\left(x_{1}, x_{2}, x_{3}\right)=-\left(x_{1}+x_{2}+x_{3}\right)$ subject to:

$$
\begin{aligned}
& x_{1}^{2}+x_{2}-3 \leq 0 \\
& x_{1}+3 x_{2}+2 x_{3}-7 \leq 0
\end{aligned}
$$

$$
\sqrt{11}\|\|\|\|\quad\|\|\| \quad\| \perp\|\|\quad\|
$$

The Lagrangian is the function:
$L\left(x_{1}, x_{2}, x_{3}, \lambda_{1}, \lambda_{2}\right)=-\left(x_{1}+x_{2}+x_{3}\right)-\lambda_{1}\left(x_{1}^{2}+x_{2}-3\right)-\lambda_{2}\left(x_{1}-\right.$
The solution to the constrained maximisation problem is amongst the solutions to the equations in $\nabla L=\mathbf{0}$. That is:

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=-1-2 x_{1} \lambda_{1}-\lambda_{2}=0 \\
& \frac{\partial L}{\partial x_{2}}=-1-\lambda_{1}-3 \lambda_{2}=0 \\
& \frac{\partial L}{\partial x_{3}}=-1-2 \lambda_{2}=0 \\
& \frac{\partial L}{\partial \lambda_{1}}=-\left(x_{1}^{2}+x_{2}-3\right)=0 \\
& \frac{\partial L}{\partial \lambda_{2}}=-\left(x_{1}+3 x_{2}+2 x_{3}-7\right)=0
\end{aligned}
$$

Solving, we get $\lambda_{1}=0.5, \lambda_{2}=-0.5, x_{1}=-0.5$,
$x_{2}=2.75$, and $x_{3}=-0.375$. This gives $z=-1.875$
as the maximum, and 1.875 as the minimum for $f\left(x_{1}, x_{2}, x_{3}\right)$

