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Feasible Solutions
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Global and Local Optimum
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Global and Local Optimum

Constrained Optimum != Global Optimum
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Convex Functions
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Strictly Convex Functions

A function is strictly convex if the line segment is strictly 
above the function (Ex. a linear function is not strictly convex)
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Examples of Convex Functions
Examples of convex functions are:

●  Linear functions of the form ax + b (for all a, b)
●  Power functions of the form |x|p for p>=1
●  Exponential functions of the form eax (for all a)
●  Norms like | x | or | x |2
●  max(x1 , x2 , . . . , xn ) is convex
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Prove that they are convex!



Important Results

● For a convex function, any local minimum is also a global 
minimum

● For a strictly convex function, if there is a local minimum 
then it is a unique global minimum
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Multivariate
Unconstrained
Optimisation
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Goal: Optimize u = f(x)

The results from the calculus require counterparts to the 
first and second-differentials
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Gradient
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Gradient - Example
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Gradient - Example
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Hessian
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Hessian - Example
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Hessian - Example
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Negative Definiteness
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A symmetric matrix is negative definite if and only if 
all of its principal minors of even order are positive 
and all of its principal minors of odd order are 
negative.



Negative Definiteness
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Numerical Optimization
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Gradient Descent
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Gradient Ascent
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Convex functions and Gradient Ascent/Descent

In case of convex functions, finding Local Optima is enough 
as it is also the global optima.
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Exercise
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Exercise
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Exercise
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Exercise
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Lagrange Multipliers
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Constrained Multivariable Optimization



35

Maximize f(x,y)
Subject to g(x,y)=0
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The Lagrange multiplier theorem roughly states that at any stationary point of 
the function that also satisfies the equality constraints, the gradient of the 
function at that point can be expressed as a linear combination of the 
gradients of the constraints at that point, with the Lagrange multipliers acting 
as coefficients.
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Example
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