Compressing Data (Special Case) I

(Adapted from Alpaydin, Introduction to Machine Learning)

- Consider the special case when the data are known beforehand to be from some groups (or classes). We will only look at the case were data are from 2 classes (dependent variable values " 1 " and " 0 "). In general, each data point is a

Compressing Data (Special Case) II

point in d -
dimensional space. A two-dimensional example is shown below:

Compressing Data (Special Case) III

- In Linear Discriminant Analysis (LDA): not to be confused with Latent Dirichlet Allocation), we want to find a direction \mathbf{w} s.t. when the data are projected onto \mathbf{w} they are well separated
- LDA thus reduces the d-dimensional data to 1 dimension that allows the best separation into the classes
- The projection of a vector \mathbf{x} onto a vector \mathbf{w} is

$$
\mathbf{z}=\frac{1}{|\mathbf{w}|} \mathbf{w}^{T} \mathbf{x}
$$

- In the figure m_{1} is the projection of \mathbf{m}_{1} and m_{2} is the projection of \mathbf{m}_{2} onto \mathbf{w}. We can take \mathbf{w} to be a unit-vector, since we are only interested in the magnitude of the projections in direction (angle) of \mathbf{w} That is:

$$
m_{i}=\mathbf{w}^{T} \mathbf{m}_{i}
$$

Compressing Data (Special Case) IV

- Assuming Class 1 is represented by $y=1$ and Class 2 is represented by $y=0$, then, given data with N instances:

$$
m_{1}=\frac{\sum_{i=1}^{N} \mathbf{w}^{T} \mathbf{x}_{i} y_{i}}{\sum_{i=1}^{N} y_{i}}
$$

and:

$$
m_{2}=\frac{\sum_{i=1}^{N} \mathbf{w}^{\top} \mathbf{x}_{i}\left(1-y_{i}\right)}{\sum_{i=1}^{N}\left(1-y_{i}\right)}
$$

- The scatter of the projected instances about their (projected) means is:

$$
s_{1}^{2}=\sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-m_{1}\right)^{2} y_{i}
$$

and:

$$
s_{2}^{2}=\sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-m_{1}\right)^{2}\left(1-y_{i}\right)
$$

Compressing Data (Special Case) V

- We want to find a w s.t. m_{1} and m_{2} are as far apart as possible, and s_{1}^{2} and s_{2}^{2} are as small as possible. That is, we want to maximize:

$$
f(\mathbf{w})=\frac{\left(m_{1}-m_{2}\right)^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

- The numerator is:

$$
\begin{aligned}
\left(m_{1}-m_{2}\right)^{2} & =\left(\mathbf{w}^{T} \mathbf{m}_{1}-\mathbf{w}^{T} \mathbf{m}_{2}\right)^{2} \\
& =\mathbf{w}^{T}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \mathbf{w} \\
& =\mathbf{w}^{T} \mathrm{~S}_{1,2} \mathbf{w}
\end{aligned}
$$

Compressing Data (Special Case) VI

and the denominator is:

$$
\begin{aligned}
s_{1}^{2} & =\sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-m_{1}\right)^{2} \\
& =\sum_{i} \mathbf{w}^{T}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T} \mathbf{w} \\
& =\mathbf{w}^{T} \mathrm{~S}_{1} \mathbf{w}
\end{aligned}
$$

where $\mathrm{S}_{1}=\sum_{i}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T}$.
Similarly:

$$
s_{2}^{2}=\mathbf{w}^{T} \mathbf{S}_{2} \mathbf{w}
$$

and the denominator is:

$$
s_{1}^{2}+s_{2}^{2}=\mathbf{w}^{T}\left(\mathrm{~S}_{1}+\mathrm{S}_{2}\right) \mathbf{w}
$$

Compressing Data (Special Case) VII

- Let $\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}$. Recall we want to minimise:

$$
f(\mathbf{w})=\frac{\mathbf{w}^{T} S_{1,2} \mathbf{w}}{\mathbf{w} S w}
$$

- It can be shown that if the partial derivation of f w.r.t. \mathbf{w} is 0 then:

$$
\mathbf{w}=\mathbf{S}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
$$

