
Dimensionality Reduction using PCA I

Overview:

I Let d be the number of features in each datapoint.

I Dimensionality Reduction: Find fewer features (less than d)
such that they are representative of the original d features.

I Principal Component Analysis (PCA) gives us new features
(principal components) that are linear combinations of the
original features.

I Principal components can be sorted by the amount of
variance in the data that they can explain.

I Principal components form an orthonormal basis of the d
dimensional feature space.

I p principal components (p < d) are chosen such that
maximum variance in the data is captured.
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Dimensionality Reduction using PCA II

I Let X be an n × d data matrix that contains n datapoints
having d feature dimensions.

I Mean centering: The average value of each of the d features
is subtracted from the rows of X. This produces a dataset
such that the mean of the rows is ~0.

I We will assume that the data matrix X is mean centered.

I Covariance between features f1 and f2:

COV (f1, f2) = 1
n−1

n∑
i=1

(f1 − f̄1)(f2 − f̄2)

I Step 1: Find covariance matrix cov = 1
n−1X

TX
Note: If the scales of the features vary widely, then compute the

correlation matrix instead of covariance matrix in Step 1.

I The (i , j)th element of cov matrix will contain the covariance
between i th and j th features.
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Dimensionality Reduction using PCA III

I rank(cov) = rank(X) = r (because rank(XTX) = rank(X)).

I eigenvectors of cov will be orthogonal (because cov is
symmetric).

I Step 2: Find the eigenvalues and orthonormal eigenvectors of
cov . Order the eigenvectors by their eigenvalues from highest
to lowest.

I The eigenvectors corresponding to large eigenvalues are more
significant, and capture more variation in the data.

I Step 3: Select p eigenvectors (principal components)
corresponding to the p largest eigenvalues.
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Dimensionality Reduction using PCA IV

I Step 4: Construct a matrix V with p orthonormal eigenvectors
as its columns.

I Step 5: Project the data matrix X on to the space spanned by
the p eigenvectors in V.
Xnew = XV

I Xnew is the new data matrix with each datapoint having p
dimensions.
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Dimensionality Reduction: An Example I

I Let X be mean centered 200× 2 datamatrix. Each datapoint
has two dimensions.
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Dimensionality Reduction: An Example II

I Figure shows the orthonormal eigenvectors of cov matrix.
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Dimensionality Reduction: An Example III

I Figure shows vectors in Xp = XV, where V is 2× 1 matrix
containing the eigenvector corresponding to the largest
eigenvalue. The dimensionality is reduced while retaining
maximum possible variation in the data.
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Dimensionality Reduction: An Example IV

I The reduced data Xp can be moved back to the original two
dimensional feature space using XpVT. The figure shows
datapoints in XpVT as dark dots, and those in the original
data matrix X as light dots.
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