Dimensionality Reduction using PCA I

Overview:

- Let d be the number of features in each datapoint.
- Dimensionality Reduction: Find fewer features (less than d) such that they are representative of the original d features.
- Principal Component Analysis (PCA) gives us new features (principal components) that are linear combinations of the original features.
- Principal components can be sorted by the amount of variance in the data that they can explain.
- Principal components form an orthonormal basis of the d dimensional feature space.
- p principal components $(p<d)$ are chosen such that maximum variance in the data is captured.

Dimensionality Reduction using PCA II

- Let \mathbf{X} be an $n \times d$ data matrix that contains n datapoints having d feature dimensions.
- Mean centering: The average value of each of the d features is subtracted from the rows of \mathbf{X}. This produces a dataset such that the mean of the rows is $\overrightarrow{0}$.
- We will assume that the data matrix \mathbf{X} is mean centered.
- Covariance between features f_{1} and f_{2} : $\operatorname{COV}\left(f_{1}, f_{2}\right)=\frac{1}{n-1} \sum_{i=1}^{n}\left(f_{1}-\bar{f}_{1}\right)\left(f_{2}-\bar{f}_{2}\right)$
- Step 1: Find covariance matrix $\operatorname{cov}=\frac{1}{n-1} \mathbf{X}^{\top} \mathbf{X}$ Note: If the scales of the features vary widely, then compute the correlation matrix instead of covariance matrix in Step 1.
- The $(i, j)^{t h}$ element of cov matrix will contain the covariance between $i^{\text {th }}$ and $j^{\text {th }}$ features.

Dimensionality Reduction using PCA III

$-\operatorname{rank}(\operatorname{cov})=\operatorname{rank}(\mathbf{X})=r\left(\right.$ because $\left.\operatorname{rank}\left(\mathbf{X}^{\top} \mathbf{X}\right)=\operatorname{rank}(\mathbf{X})\right)$.

- eigenvectors of cov will be orthogonal (because cov is symmetric).
- Step 2: Find the eigenvalues and orthonormal eigenvectors of cov. Order the eigenvectors by their eigenvalues from highest to lowest.
- The eigenvectors corresponding to large eigenvalues are more significant, and capture more variation in the data.
- Step 3: Select p eigenvectors (principal components) corresponding to the p largest eigenvalues.

Dimensionality Reduction using PCA IV

- Step 4: Construct a matrix V with p orthonormal eigenvectors as its columns.
- Step 5: Project the data matrix \mathbf{X} on to the space spanned by the p eigenvectors in \mathbf{V}.
$\mathbf{X}_{\text {new }}=\mathbf{X V}$
- $\mathbf{X}_{\text {new }}$ is the new data matrix with each datapoint having p dimensions.

Dimensionality Reduction: An Example I

- Let \mathbf{X} be mean centered 200×2 datamatrix. Each datapoint has two dimensions.

Dimensionality Reduction: An Example II

- Figure shows the orthonormal eigenvectors of cov matrix.

Dimensionality Reduction: An Example III

- Figure shows vectors in $\mathbf{X}_{\mathbf{p}}=\mathbf{X V}$, where \mathbf{V} is 2×1 matrix containing the eigenvector corresponding to the largest eigenvalue. The dimensionality is reduced while retaining maximum possible variation in the data.

Dimensionality Reduction: An Example IV

- The reduced data $\mathbf{X}_{\mathbf{p}}$ can be moved back to the original two dimensional feature space using $\mathbf{X}_{\mathbf{p}} \mathbf{V}^{\boldsymbol{\top}}$. The figure shows datapoints in $\mathbf{X}_{\mathbf{p}} \mathbf{V}^{\boldsymbol{\top}}$ as dark dots, and those in the original data matrix \mathbf{X} as light dots.

