Tutorial 5 - Numeric Prediction

25th Feb, 2020

1. Show MSE $=($ variance $)+(\text { bias })^{2}$

MSE of an estimator is defined as:

$$
\operatorname{MSE}(\hat{\theta})=\mathrm{E}_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]
$$

Ans.

$$
\begin{aligned}
\operatorname{MSE}(\hat{\theta}) & =\mathrm{E}_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \\
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]+\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)^{2}\right] \\
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right)^{2}+2\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right)\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)+\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)^{2}\right] \\
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right)^{2}\right]+\mathrm{E}_{\theta}\left[2\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right)\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)\right]+\mathrm{E}_{\theta}\left[\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right)^{2}\right]+2\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right) \mathrm{E}_{\theta}\left[\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right]+\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)^{2} \\
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right)^{2}\right]+2\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)\left(\mathrm{E}_{\theta}[\hat{\theta}]-\mathrm{E}_{\theta}[\hat{\theta}]\right)+\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)^{2} \\
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}[\hat{\theta}]\right)^{2}\right]+\left(\mathrm{E}_{\theta}[\hat{\theta}]-\theta\right)^{2} \\
& =\operatorname{Var}_{\theta}(\hat{\theta})+\operatorname{Bias}_{\theta}(\hat{\theta}, \theta)^{2}
\end{aligned}
$$

2. Find a linear model $Y=a+b X$ that minimises mean-square error given points (x1, y1),(x2, y2), ...,(xn, yn).

Step 1: Find $\nabla_{\mathbf{a}}$ and $\nabla_{\mathbf{b}}$

Step 2: Show, by setting $\nabla_{\mathbf{a}}=0$ that the point (\bar{X}, \bar{Y}) lies on the regression line (that is, $Y=a+b X$)

Step 3: Derive expressions for a and b.
3. We want to fit a linear model $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$ by finding a and b using gradient descent. Write the iterative update equations for a and b in terms of the gradients.

Ans.

$$
\begin{aligned}
& b_{k+1}=b_{k}-\eta \nabla_{b} \\
& a_{k+1}=a_{k}-\eta \nabla_{a}
\end{aligned}
$$

Here, η is the step-size.
4. What changes with gradient descent we want to fit a non-linear model $Y=a+b X+c X^{2}$?

Ans. Algorithmically, nothing. We just have to find the extra gradient $\nabla \mathrm{c}$ and use the corresponding update equation for c .
5. What happens the the cost function being minimised has multiple local minima?

Ans. Gradient descent can get stuck in a local minimum that can be far away from the global minimum. Random restarts will not provably fix this, although it may help.
6. We want to fit a linear model $Y=a+b X$. For the special case that the erorrs $e_{i} \sim_{\text {i.i.d. }} N\left(0, \sigma^{2}\right)$ show that the least-square estimate for b is the same as the maximimum likelihood estimate for b
7. Derive equations for gradient descent when a regularisation term is added to the usual MSE cost function.

THANK YOU!

