Bayesian Networks
Tutorial - 29th February 2020



Is X independent of
y given z?



Marginalizing and Conditionalizing
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Marginalising over C' makes A and B independent. A
and B are (unconditionally) independent : p(A, B) =
p(A)p(B). In the absence of any information about
the effect C', we retain this belief.

Conditioning on C' makes A and B (graphically) de-
pendent — in general p(A, B|C) # p(A|C)p(B|C). Al-
though the causes are a priori independent, knowing
the effect C' in general tells us something about how
the causes colluded to bring about the effect observed.

Conditioning on D, a descendent of a collider C,
makes A and B (graphically) dependent — in general

p(A, B|D) # p(A|D)p(B|D).
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Marginalising over C' makes A and B (graphically) de-
pendent. In general, p(A, B) # p(A)p(B). Although
we don’t know the ‘cause’, the ‘effects’ will neverthe-
less be dependent.

Conditioning on €' makes A and B independent:
p(A, B|C) = p(A|C)p(B|C). If you know the ‘cause’
C', you know everything about how each effect occurs,
independent of the other effect. This is also true for
reversing the arrow from A to C' — in this case A would
‘cause’ C' and then C ‘cause’ B. Conditioning on C
blocks the ability of A to influence B.
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Collider

Definition 3.2. Given a path P, a collider is a node ¢ on P with neighbours a and b on P such that
a — ¢ + b. Note that a collider is path specific, see fig ll i
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Figure 3.7: In graphs (a) and (b), variable z is not a collider.  (¢): Variable z is a collider. Graphs
(a) and (b) represent conditional independence x 1L y| z. In graphs (¢) and (d), # and y are ‘graphically’
conditionally dependent given variable z.



D-Separation

One may also phrase this as follows. For every variable z € A and y € Y, check every path U between x
and y. A path U is said to be blocked if there is a node w on U such that either

1. w is a collider and neither w nor any of its descendants is in Z, or
2. w is not a collider on U and w is in Z.

If all such paths are blocked then A" and Y are d-separated by Z. If the variable sets A and Y are d-separated
by Z, they are independent conditional on Z in all probability distributions such a graph can represent.

X and )Y d-separated by Z2 = X 1L V| Z




Markov Blanket (MB)

The Markov blanket of a node is its parents, children and parents of its
children.

Significance?

Markov blanket of a node is the only knowledge needed to predict the behavior of
that node and its children.

Pr(A | MB(A), B) = Pr(A | MB(A)).

Yudea Pearl came up with this!



Exercises

Q1: A Bayesian network has the following graphical structure:

oy

C

Assume you have all the conditional probability tables
necessary to define the network completely. Derive the
formula for computing the conditional probability P(C|a)



Ans.  P(C|a) = P(C, a)/P(a)
Now,
P(C,a) = %, P(a, B, C, D).
Also,
P(a, B, C, D) = P(a) x P(Bla) x P(C|B) x P(D|a)
We get,

P(Cla) = 2 , P(Bla) x P(C|B) x P(D|a)



Q2a. Let A, B and C be Boolean variables with possible values 0 and 1. The
variables are related such that C = XOR(A,B) (that is C = (A+B) mod 2). Draw a
Bayesian network and define the corresponding probabilities for this network
which correspond to this relation. You may assume prior probabilities of A and B
are 0.5.
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Q2b. Add to the XOR network network two additional nodes, D and K, and the
corresponding links and probabilities so that this new network represents the
following situation. We are testing in a written exam whether a student knows the
operation XOR. In the exam problem, the student is given the values of A and
B, an is asked to calculate XOR(A,B). The students answer is D. D should
ideally be equal C. But D may be different from C if the student does not know
about XOR. Even if the student knows about XOR, the answer may still be
incorrect due to a silly mistake. Let the variable K = 1 if the student knows the
XOR operation, otherwise K = 0. If the student knows the operation then his
or her answer D will be correct in 99% of the cases. If the student does not
know XOR, then the answer D will be chosen completely randomly with
equal probabilities of 0 and 1. Draw the Bayesian network to represent this
situation. You may assume that the the prior probability of K is 0.5.



Ans.



QZ2c. In the previous question, letA=0,B =1 and D = 1. What is the
(approximate) probability that the student knows about XOR?

Ans. a signifies A =1 and, ma signifies A= 0

We want to use the network to compute P(K = 1|ma, b, d)
e P(K|ma, b, d)=aP(K, 7a, b, d)
e P(K,7a,b,d)=%,P(K, ma,b,C,d)

e P(K, -a, b, C,d)=P(ma)x P(b) x P(C|a, b) x P(K) x P(d|C,K)



e Solving separately for K=1 and K = 0, we get:
P(k, 7a, b, d) = P(ma)P(b)P(c|—a, b)P(k)P(d|c, k) + P(a)P(b)P(~c|—a,b)P(k)P(d|~c,k)
e Using the CPTs, this is,
P(k, 7a, b, d) = (0.5)(0.5)(1)(0.5)(0.99) + (0.5)(0.5)(0)(0.5)(0.01) = 0.12375
e Similarly for 7k, we get:
P(k, 7a, b, d) = (0.5)(0.5)(1)(0.5)(0.5) + 0 = 0.0625
e Adding and normalising, we get P(k|™a, b, d) =

0.12375/(0.12375+0.0625) = 0.6644295



Q3. If all the r.v's in the graph shown below are binary, and their joint distribution
satisfies the Markov condition, how many entries are needed: (a) in the full joint
distribution; and (b) in the factorized conditional distributions:

Ans. (a)2°-1 = 1023
(b) 26



Q4. For the following Bayesian network, list out the parents, non-descendents and
conditional independencies identified by the Markov condition of each node.

Ans.

X | PAx | NDx Cond. Indep.
O © 815 [t [:
B|A C,E B c.i. C,E, given A
/ | C | A B C c.i. Bgiven A
o @ D | B,C|AE D c.i. A E given B, C
E|C A B,D | Ec.i. A B,D given C




Resources

e Bayesian Reasoning and Machine Learning - David Barber [PDF]
(Simple/Intuitive)
e Probabilistic Graphical Models - Daphne Koller (Advanced/Comprehensive)


http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf

