Bayesian Networks

Tutorial - 29th February 2020

Is x independent of y given z ?

"given" = "conditioned on"

Marginalizing and Conditionalizing

Marginalising over C makes A and B independent. A and B are (unconditionally) independent : $p(A, B)=$ $p(A) p(B)$. In the absence of any information about the effect C, we retain this belief.

Conditioning on C makes A and B (graphically) dependent - in general $p(A, B \mid C) \neq p(A \mid C) p(B \mid C)$. Although the causes are a priori independent, knowing the effect C in general tells us something about how the causes colluded to bring about the effect observed.

Conditioning on D, a descendent of a collider C, makes A and B (graphically) dependent - in general $p(A, B \mid D) \neq p(A \mid D) p(B \mid D)$.

Marginalising over C makes A and B (graphically) dependent. In general, $p(A, B) \neq p(A) p(B)$. Although we don't know the 'cause', the 'effects' will nevertheless be dependent.

Conditioning on C makes A and B independent: $p(A, B \mid C)=p(A \mid C) p(B \mid C)$. If you know the 'cause' C, you know everything about how each effect occurs, independent of the other effect. This is also true for reversing the arrow from A to C - in this case A would 'cause' C and then C 'cause' B. Conditioning on C blocks the ability of A to influence B.

These graphs all express the same conditional independence assumptions.

Collider

Definition 3.2. Given a path \mathcal{P}, a collider is a node c on \mathcal{P} with neighbours a and b on \mathcal{P} such that $a \rightarrow c \leftarrow b$. Note that a collider is path specific, see fig (3.8).

Figure 3.7: In graphs (a) and (b), variable z is not a collider. (c): Variable z is a collider. Graphs (a) and (b) represent conditional independence $x \Perp y \mid z$. In graphs (c) and (d), x and y are 'graphically' conditionally dependent given variable z.

D-Separation

One may also phrase this as follows. For every variable $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, check every path U between x and y. A path U is said to be blocked if there is a node w on U such that either

1. w is a collider and neither w nor any of its descendants is in \mathcal{Z}, or
2. w is not a collider on U and w is in \mathcal{Z}.

If all such paths are blocked then \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z}. If the variable sets \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z}, they are independent conditional on \mathcal{Z} in all probability distributions such a graph can represent.

$$
\mathcal{X} \text { and } \mathcal{Y} \text { d-separated by } \mathcal{Z} \Rightarrow \mathcal{X} \Perp \mathcal{Y} \mid \mathcal{Z}
$$

Markov Blanket (MB)

The Markov blanket of a node is its parents, children and parents of its children.

Significance?

Markov blanket of a node is the only knowledge needed to predict the behavior of that node and its children.

$$
\operatorname{Pr}(A \mid \mathrm{MB}(A), B)=\operatorname{Pr}(A \mid \mathrm{MB}(A))
$$

Exercises

Q1: A Bayesian network has the following graphical structure:

Assume you have all the conditional probability tables necessary to define the network completely. Derive the formula for computing the conditional probability $P(C \mid a)$

Ans. $\quad P(C \mid a)=P(C, a) / P(a)$
Now,

$$
P(C, a)=\Sigma_{B, D} P(a, B, C, D) .
$$

Also,

$$
P(a, B, C, D)=P(a) \times P(B \mid a) \times P(C \mid B) \times P(D \mid a)
$$

We get,

$$
P(C \mid a)=\Sigma_{B, D} P(B \mid a) \times P(C \mid B) \times P(D \mid a)
$$

Q2a. Let A, B and C be Boolean variables with possible values 0 and 1. The variables are related such that $C=\operatorname{XOR}(A, B)$ (that is $C=(A+B) \bmod 2)$. Draw a Bayesian network and define the corresponding probabilities for this network which correspond to this relation. You may assume prior probabilities of A and B are 0.5.

A	B	$p(C)$
-0	0	0.0
1	0	1.0
0	1	1.0
1	1	0.0

Q2b. Add to the XOR network network two additional nodes, D and K, and the corresponding links and probabilities so that this new network represents the following situation. We are testing in a written exam whether a student knows the operation XOR. In the exam problem, the student is given the values of A and B, an is asked to calculate $\operatorname{XOR}(A, B)$. The students answer is D. D should ideally be equal C. But D may be different from C if the student does not know about XOR. Even if the student knows about XOR, the answer may still be incorrect due to a silly mistake. Let the variable $\mathrm{K}=1$ if the student knows the XOR operation, otherwise $\mathrm{K}=\mathbf{0}$. If the student knows the operation then his or her answer D will be correct in 99% of the cases. If the student does not know XOR, then the answer D will be chosen completely randomly with equal probabilities of 0 and 1. Draw the Bayesian network to represent this situation. You may assume that the the prior probability of K is 0.5 .

Ans.

$$
\begin{array}{ccl}
C & K & p(D) \\
\hdashline 0 & 0 & 0.5 \\
1 & 0 & 0.5 \\
0 & 1 & 0.01 \\
1 & 1 & 0.99 \\
\hline-
\end{array}
$$

Q2c. In the previous question, let $A=0, B=1$ and $D=1$. What is the (approximate) probability that the student knows about XOR?

Ans. a signifies $\mathbf{A}=\mathbf{1}$ and, \mathfrak{r} a signifies $\mathbf{A}=\mathbf{0}$
We want to use the network to compute $\mathbf{P (K = 1 | \urcorner a , b , d)}$

- $P(K \mid \neg a, b, d)=a P(K, \neg a, b, d)$
- $P(K, \neg a, b, d)=\Sigma_{C} P(K, \neg a, b, C, d)$
- $P(K, \neg a, b, C, d)=P(\neg a) \times P(b) \times P(C \mid \neg a, b) \times P(K) \times P(d \mid C, K)$
- Solving separately for $\mathrm{K}=1$ and $\mathrm{K}=0$, we get:

$$
P(k, \neg a, b, d)=P(\neg a) P(b) P(c \mid \neg a, b) P(k) P(d \mid c, k)+P(\neg a) P(b) P(\neg c \mid \neg a, b) P(k) P(d \mid \neg c, k)
$$

- Using the CPTs, this is,

$$
P(k, \neg a, b, d)=(0.5)(0.5)(1)(0.5)(0.99)+(0.5)(0.5)(0)(0.5)(0.01)=0.12375
$$

- Similarly for $\neg \mathrm{k}$, we get:

$$
P(\neg k, \neg a, b, d)=(0.5)(0.5)(1)(0.5)(0.5)+0=0.0625
$$

- Adding and normalising, we get $\mathrm{P}(\mathrm{k} \mid \neg \mathrm{a}, \mathrm{b}, \mathrm{d})=$

$$
0.12375 /(0.12375+0.0625)=0.6644295
$$

Q3. If all the r.v's in the graph shown below are binary, and their joint distribution satisfies the Markov condition, how many entries are needed: (a) in the full joint distribution; and (b) in the factorized conditional distributions:

Ans. (a) $2^{10}-1=1023$
(b) 26

Q4. For the following Bayesian network, list out the parents, non-descendents and conditional independencies identified by the Markov condition of each node.

Ans.

X	$P A_{X}$	$N D_{X}$	Cond. Indep.
A	\emptyset	\emptyset	-
B	A	C, E	B c.i. C, E, given A
C	A	B	C c.i. B given A
D	B, C	A, E	D c.i. A, E given B, C
E	C	A, B, D	E c.i. A, B, D given C

Resources

- Bayesian Reasoning and Machine Learning - David Barber [PDF] (Simple/Intuitive)
- Probabilistic Graphical Models - Daphne Koller (Advanced/Comprehensive)

