Coins: Assumptions and Results Part-2

20th March, 2020

Single Coin Problem

Prior: Given a single coin with a prior p.d.f of heads specified by F ~ beta(f ; α, β), probability of the outcome on the first toss

$$
P(X=1)=E(F)=\alpha /(\alpha+\beta)
$$

Posterior: Given a single coin with a prior p.d.f for heads specified by $F \sim \operatorname{beta}(f ; \alpha, \beta)$, the prior probability of heads after obtaining data consisting of s heads and \mathbf{t} tails is F|D $\sim \operatorname{beta}(f ; \alpha+s, \beta+t)$
beta(f, 3,3)

beta(f, 11,5)

Also, the posterior probability is given by:

$$
P(X=1 \mid d)=E(F \mid d)=(\alpha+s) /(\alpha+\beta+s+t)
$$

Likelihood: Given a single coin with a prior p.d.f of heads specified by $F \sim \operatorname{beta}(f ; \alpha, \beta)$, the probability of data \mathbf{d} consisting of \mathbf{s} heads and \mathbf{t} tails is

$$
P(d)=\frac{B(\alpha+s, \beta+t)}{B(\alpha, \beta)}
$$

Two URN Problem

- $P\left(X_{1}=1, X_{2}=1\right)=P\left(X_{1}=1\right) \times P\left(X_{2}=1\right)$
- Assume the (joint) prior probability distribution for sampling and tossing coins from the urn can be represented by the following graph:

Q1(a). Using the graphical model of joint probability shown, what is $P\left(X_{1}=1, X_{2}=1\right) ?$

Ans. For the graphical model shown, $P\left(X_{i}=1\right)=E\left(F_{i 1}\right)$.

$$
E\left(F_{i 1}\right)=1 /(1+1)=1 / 2
$$

Using the fact that X_{1} and X_{2} are independent of each other we get,

$$
P\left(X_{1}=1, X_{2}=1\right)=P\left(X_{1}=1\right) P\left(X_{2}=1\right)=1 / 4 .
$$

Q1(b). We observe the data d below from 7 tosses of two binary random variables X_{1} and X_{2} :

Case	X_{1}	X_{2}
1	1	1
2	1	1
3	1	1
4	1	2
5	2	1
6	2	1
7	2	2

Assume the variables are are independent of each other, and that prior p.d.f.'s over the probabilities of 1's is as shown previously. What is the probability $P\left(X_{1}=1, X_{2}=1 \mid d\right) ?$

Ans. Modelling the data as being generated by drawing coins from independent urns, then after data from the 7 tosses, the posteriors on the (relative) frequencies of heads are $\operatorname{beta}\left(\mathrm{f}_{11} ; 1+4,1+3\right)$ and $\operatorname{beta}\left(\mathrm{f}_{21} ; 1+5,1+2\right)$.

$$
\begin{aligned}
P\left(X_{1}=1, X_{2}=1 \mid d\right) & =P\left(X_{1}=1 \mid d\right) P\left(X_{2}=1 \mid d\right) \\
& =E\left(F_{11} \mid d\right) E\left(F_{21} \mid d\right) \\
& =(5 / 9)^{*}(6 / 9) \\
& =(10 / 27)=0.37
\end{aligned}
$$

Q1(c). What is $P(d)$?
Ans. Since the coins are independent, we can treat the probabilities of obtaining 1 's and 2's from them as independent events. Thus,

$$
\begin{aligned}
P(d) & =P(4 \mathrm{H}, 3 \mathrm{~T} \text { from } \mathrm{X} 1 \text { and } 5 \mathrm{H}, 2 \mathrm{~T} \text { from } \mathrm{X} 2) \\
& =P(4 \mathrm{H}, 3 \mathrm{~T} \text { from } \mathrm{X} 1) \mathrm{P}(5 \mathrm{H}, 2 \mathrm{~T} \text { from } \mathrm{X} 2)
\end{aligned}
$$

As we know,

$$
P(d)=\frac{B(\alpha+s, \beta+s)}{B(\alpha, \beta)}
$$

Hence,

$$
\begin{aligned}
P(d) & =(B(1+4,1+3) / B(1,1)) *(B(1+5,1+2) / B(1,1)) \\
& \approx 2 \times 10^{-5}
\end{aligned}
$$

Conditional URN Problem

SAMPLING RULE: We draw a coin from Urn X_{1} and toss it. If it lands heads, we draw a coin from Urn $X_{2} \mid X_{1}=1$ otherwise we draw a coin from Urn $X_{2} \mid X_{1}=\mathbf{2}$

There are 3 kinds of coin-tosses (corresponding to coins drawn from the 3 urns): $\mathbf{X}_{1}, \mathbf{X}_{2} \mid \mathbf{X}_{1}=1$ and $\mathbf{X}_{2} \mid \mathbf{X}_{1}=\mathbf{2}$. Each coin has its own prior p.d.f's. The graph structure describing this is:

F_{11}-> p.d.f of first coin landing heads
F_{21}-> p.d.f. of the second coin landing heads given the first coin lands heads.
$\mathrm{F}_{22}->$ p.d.f. of the second coin landing heads given the first coin lands tails.

Q2(a). For the p.d.f's shown in the graph earlier, calculate the 4 joint probabilities of $\mathrm{X} 1, \mathrm{X} 2$.

Ans. $P\left(X_{1}=1, X_{2}=1\right)=P\left(X_{1}=1\right) P\left(X_{2}=1 \mid X_{1}=1\right)$

$$
=E\left(F_{11}\right) E\left(F_{21}\right)=1 / 2 * 1 / 2=1 / 4
$$

Similarly,

$$
\begin{aligned}
& P\left(X_{1}=1, X_{2}=2\right)=1 / 4 \\
& P\left(X_{1}=2, X_{2}=1\right)=1 / 4 \\
& P\left(X_{1}=2, X_{2}=2\right)=1 / 4
\end{aligned}
$$

Q2(b). We observe the data d below from 7 tosses of two binary random variables X1 and X2:

Case	X_{1}	X_{2}
1	1	1
2	1	1
3	1	1
4	1	2
5	2	1
6	2	1
7	2	2

Assume the variable \mathbf{X}_{2} is conditionally dependent on \mathbf{X}_{1}, and that prior p.d.f.'s over the probabilities of 1 's is as shown in the next slide:

Graphically show the posterior distributions of the Fij in the network, and find $P\left(X_{1}=1\right), P\left(X_{2}=1 \mid X_{1}=1\right)$ and $P\left(X_{2}=1 \mid X_{1}=2\right)$ using the posterior distributions.

Ans.
$\operatorname{beta}\left(f_{11} ; 5,4\right) \quad \operatorname{beta}\left(f_{21} ; 4,2\right) \quad \operatorname{beta}\left(f_{22} ; 3,2\right)$

$$
\begin{aligned}
& P(X 1=1)=E(F 11 \mid d)=5 / 9 \\
& P(X 2=1 \mid X 1=1)=E(F 21 \mid d)=4 / 6 \\
& P(X 2=1 \mid X 1=2)=E(F 22 \mid d)=3 / 5
\end{aligned}
$$

Q2(c). Calculate P(d).
Ans. $\mathrm{P}(\mathrm{d})=\mathrm{P}\left(4 \mathrm{H}, 3 \mathrm{~T}\right.$ from X_{1} and $5 \mathrm{H}, 2 \mathrm{~T}$ from $\left.\mathrm{X}_{2}\right)$
$=P\left(4 \mathrm{H}, 3 \mathrm{~T}\right.$ from $\left.\mathrm{X}_{1}\right)$ * $\mathrm{P}\left(3 \mathrm{H}, 1 \mathrm{~T}\right.$ from $\left.\mathrm{X}_{2} \mid \mathrm{X}_{1}=1\right)$ * $\mathrm{P}\left(2 \mathrm{H}, 1 \mathrm{~T}\right.$ from $\mathrm{X}_{2} \mid \mathrm{X}_{1}=$ 2)

$$
P(d)=\frac{B(5,4)}{B(1,1)} \frac{B(4,2)}{B(1,1)} \frac{B(3,2)}{B(1,1)}
$$

- In general, for each variable X, we will get a single "coin" for each instantiation (combination) of values of the parent variables in the graph (by convention, we will take variables that have no parents as having a single instantiation)
- Let there are \mathbf{n} variables, and a variable $\mathbf{X}_{\mathbf{i}}$ have \mathbf{n}_{i} instantiations. Suppose the data result in \mathbf{s}_{ij} heads for the $\mathrm{j}^{\text {th }}$ instantiation of the parents of \mathbf{X}_{i}; and t_{ij} the corresponding number of of tails. Then

$$
P(d)=\prod_{i=1}^{n} \prod_{j=1}^{n_{i}} \frac{B\left(\alpha_{i j}+s_{i j}, \beta+t_{i j}\right)}{B\left(\alpha_{i j}, \beta_{i j}\right.}
$$

THANK YOU!

