Structural Learning in BN

$27^{\text {th }}$ March, 2020

Revision

For coins with Beta priors:

- Prior: $P(X=1)=E(F)=\alpha /(\alpha+\beta)$
- Posterior: $P(X=1 \mid d)=E(F \mid d)=(\alpha+s) /(\alpha+\beta+s+t)$
- Likelihood: $P(d)=\frac{B(\alpha+s, \beta+s)}{B(\alpha, \beta)}$; where $B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$
- Generalised Formula:

$$
P(d)=\prod_{i=1}^{n} \prod_{j=1}^{n_{i}} \frac{B\left(\alpha_{i j}+s_{i j}, \beta+t_{i j}\right)}{B\left(\alpha_{i j}, \beta_{i j}\right.}
$$

- Previous Assumption: The graph structure (DAG - Directed Acyclic Graph) was known to us.
- Hence $P(d)$ was $P(d \mid G)$ actually.
- For multiple graphs $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}, P(d)$ can be calculated as:

$$
P(d)=P\left(d \mid G_{1}\right)^{*} P\left(G_{1}\right)+P\left(d \mid G_{2}\right) * P\left(G_{2}\right)+\ldots+P\left(d \mid G_{n}\right) * P\left(G_{n}\right)
$$

If we have several potential DAG structures $\mathbf{G}_{1}, \mathbf{G}_{2}, \ldots, \mathbf{G}_{\mathrm{n}}$ we can use Bayes' theorem to calculate:

$$
P\left(G_{i} \mid D\right)=\alpha P\left(D \mid G_{i}\right) P\left(G_{i}\right)
$$

And then choose the Graph which has maximum probability given the data D.

Ex1: Suppose we are doing a study concerning individuals who were married by age 30 , and we want to see if there is a correlation between graduating college and getting divorced.

Variable	Value	When the Variable Takes this Value
X_{1}	1	Individual graduated college
	2	Individual did not graduate college
X_{2}	1	Individual was divorced by age 50
	2	Individual was not divorced by age 50

Next, we observe following data:

Case	X_{1}	X_{2}
1	1	1
2	1	2
3	1	1
4	2	2
5	1	1
6	2	1
7	1	1
8	2	2

Now, given two potential graphs, find out which graph is more probable.

gp_{1}
beta($f_{11} ; 2,2$)

beta($f_{21} ; 2,2$)

$$
\mathrm{gp}_{2}
$$

Ans.
Step1: Calculate $P\left(d \mid G_{i}\right)$; here $i \in\{1,2\}$.

$$
\begin{aligned}
P\left(d \mid g p_{1}\right) & =\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+5) \Gamma(2+3)}{\Gamma(2) \Gamma(2)}\right)\left(\frac{\Gamma(2)}{\Gamma(2+5)} \frac{\Gamma(1+4) \Gamma(1+1)}{\Gamma(1) \Gamma(1)}\right)\left(\frac{\Gamma(2)}{\Gamma(2+3)} \frac{\Gamma(1+1) \Gamma(1+2)}{\Gamma(1) \Gamma(1)}\right) \\
& =7.2150 \times 10^{-6} \\
P\left(\mathrm{~d} \mid g p_{2}\right) & =\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+5) \Gamma(2+3)}{\Gamma(2) \Gamma(2)}\right)\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+5) \Gamma(2+3)}{\Gamma(2) \Gamma(2)}\right) \\
& =6.7465 \times 10^{-6}
\end{aligned}
$$

Step2:

Assume that our prior belief is that neither model $\left(\mathrm{gp}_{1}, \mathrm{gp}_{2}\right)$ is more probable than the other, hence we say that each model is equally likely.

$$
\mathrm{P}\left(\mathrm{gp}_{1}\right)=\mathrm{P}\left(\mathrm{gp}_{2}\right)=0.5
$$

Step3: Using Bayes' theorem:

$$
\begin{aligned}
P\left(g p_{1} \mid \mathrm{d}\right) & =\frac{P\left(\mathrm{~d} \mid g p_{1}\right) P\left(g p_{1}\right)}{P(\mathrm{~d})} \\
& =\left(7.2150 \times 10^{-6 *}(0.5)\right) / \mathrm{P}(\mathrm{~d}) \\
& =\alpha(3.6075 \times 10-6)
\end{aligned}
$$

$$
\text { Here } \alpha=1 / P(d)
$$

Similarly,

$$
\begin{aligned}
P\left(g p_{2} \mid \mathrm{d}\right) & =\frac{P\left(\mathrm{~d} \mid g p_{1}\right) P\left(g p_{1}\right)}{P(\mathrm{~d})} \\
& =\left(6.7465 \times 10^{-6}(.5)\right) / \mathrm{P}(\mathrm{~d}) \\
& =\alpha\left(3.37325 \times 10^{-6}\right)
\end{aligned}
$$

Eliminating a we get,

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{gp}_{1} \mid \mathrm{d}\right)=0.51678 \\
& \mathrm{P}\left(\mathrm{gp}_{2} \mid \mathrm{d}\right)=0.48322
\end{aligned}
$$

Hence, we conclude it is more probable that college attendance and divorce are correlated.

Q1. Suppose for the same potential graph models gp_{1} and gp_{2} as given in the previous example the observed data is the following:

Case	X_{1}	X_{2}
1	1	1
2	1	1
3	1	1
4	1	1
5	2	2
6	2	2
7	2	2
8	2	2

Find the probabilities of these DAG's occurring given the above mentioned data. Also, prior beliefs for both of these graphs are equal.

Ans.

$$
\begin{aligned}
P\left(\mathrm{~d} \mid g p_{1}\right) & =\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+4) \Gamma(2+4)}{\Gamma(2) \Gamma(2)}\right)\left(\frac{\Gamma(2)}{\Gamma(2+4)} \frac{\Gamma(1+4) \Gamma(1+0)}{\Gamma(1) \Gamma(1)}\right)\left(\frac{\Gamma(2)}{\Gamma(2+4)} \frac{\Gamma(1+0) \Gamma(1+4)}{\Gamma(1) \Gamma(1)}\right) \\
& =\alpha\left(8.6580 \times 10^{-5}\right) \\
P\left(\mathrm{~d} \mid g p_{2}\right) & =\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+4) \Gamma(2+4)}{\Gamma(2) \Gamma(2)}\right)\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+4) \Gamma(2+4)}{\Gamma(2) \Gamma(2)}\right) \\
& =\alpha\left(4.6851 \times 10^{-6}\right)
\end{aligned}
$$

Using Bayes' theorem,

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{gp}_{1} \mid \mathrm{d}\right)=0.94866 \\
& \mathrm{P}\left(\mathrm{gp}_{2} \mid \mathrm{d}\right)=0.05134
\end{aligned}
$$

Hence gp_{1} is more probable.

Q2. Suppose for the same potential graph models gp_{1} and gp_{2} as given in the previous example the observed data is the following:

Case	X_{1}	X_{2}
1	1	1
2	1	1
3	1	2
4	1	2
5	2	1
6	2	1
7	2	2
8	2	2

Find the probabilities of these DAG's occurring given the above mentioned data.
Also, prior beliefs for both of these graphs are equal.

Ans.

$$
\begin{aligned}
P\left(d \mid g p_{1}\right) & =\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+4) \Gamma(2+4)}{\Gamma(2) \Gamma(2)}\right)\left(\frac{\Gamma(2)}{\Gamma(2+4)} \frac{\Gamma(1+2) \Gamma(1+2)}{\Gamma(1) \Gamma(1)}\right)\left(\frac{\Gamma(2)}{\Gamma(2+4)} \frac{\Gamma(1+2) \Gamma(1+2)}{\Gamma(1) \Gamma(1)}\right) \\
& =\alpha\left(2.4050 \times 10^{-6}\right) \\
P\left(d \mid g p_{2}\right) & =\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+4 \Gamma(2+4)}{\Gamma(2) \Gamma(2)}\right)\left(\frac{\Gamma(4)}{\Gamma(4+8)} \frac{\Gamma(2+4) \Gamma(2+4)}{\Gamma(2) \Gamma(2)}\right) \\
& =\alpha\left(4.6851 \times 10^{-6}\right)
\end{aligned}
$$

Using Bayes' theorem,

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{gp}_{1} \mid \mathrm{d}\right)=0.33921 \\
& \mathrm{P}\left(\mathrm{gp}_{2} \mid \mathrm{d}\right)=0.66079
\end{aligned}
$$

Hence gp_{2} is more probable.

THANK YOU!

