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Revision

For coins with Beta priors:

Prior: P(X=1)=E(F) = a/(a + B)
Posterior: P(X=1|d)=E(F|ld)=(a+s)/(a+pB +s +1)

Likelihood: p(q) — B(@ ;( s, g)+ S) ; where B(x,y) = ;Ex)i(y;
o, XYy

Generalised Formula:
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e Previous Assumption: The graph structure (DAG - Directed Acyclic Graph)
was known to us.

e Hence P(d) was P(d|G) actually.

e For multiple graphs {G,, G,, . . ., G }, P(d) can be calculated as:

P(d) = P(d|G,)*P(G,) + P(d|G,)*"P(G,) + ...+ P(d|G )"P(G,)

If we have several potential DAG structures G, ,G,,...,G_we
can use Bayes’ theorem to calculate:
P(G, D) = aP(D|G,)P(G,)

And then choose the Graph which has maximum probability given the data
D.



Ex1: Suppose we are doing a study concerning individuals who were married by
age 30, and we want to see if there is a correlation between graduating college
and getting divorced.

Variable | Value | When the Variable Takes this Value
X, | Individual graduated college
Individual did not graduate college
Individual was divorced by age 50
Individual was not divorced by age 50
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Next, we observe following data:
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Now, given two potential graphs, find out which graph is more probable.
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Ans.

Step1: Calculate P(d|G); here i € {1,2}.

P(digp,) = M(4) PR45243)\ [ D) TU44)0(140) )\ ( D) P41)0(142)
1) = \tags - rere ) \Tess) ronn ) \Tes) ronm

=7.2150x10°
, _ I(4) D(245)0(243) [(4) [(2+5)[(2+3)
P(digp,) = (r(4+:-‘;) r(2)r(2) )(F(4+8) T(2)T(2) )

= 6.7465%x10°



Step2:

Assume that our prior belief is that neither model (gp,, gp,) is more probable than
the other, hence we say that each model is equally likely.

P(gp,) = P(gp,) = 0.5

Step3: Using Bayes’ theorem:

P(d|gp, )P(gp1)
P(d)

= (7.2150x10%(0.5) ) / P(d)

P(gp,|d)

= a(3.607 5x10-6) Here a = 1/P(d)



Similarly,

P(d|gp ) P(gpy)
P(d)

Plgpo|d) =

= (6.746 5x1078(.5) ) / P(d)
= 0(3.373 25x1079)

Eliminating a we get,
P(gp,|d) = 0.51678

P(gp,|d) = 0.48322

Hence, we conclude it is more probable that college attendance and divorce
are correlated.



Q1. Suppose for the same potential graph models gp, and gp, as given in the
previous example the observed data is the following:

Case | X; | X5
1 1 1
2 1 1
3 1 1
4 1 1
5 2 2
6 2 2
1 2 2
8 2 2

Find the probabilities of these DAG’s occurring given the above mentioned data.
Also, prior beliefs for both of these graphs are equal.



Ans.

P(d ~ r(4) re4+4re+4)\ [ 0@ ra+9ra+0)) ( rE) C40)r(144)
digp1) = T TG T4 T F244) - T((D)

0(8.6580%1075)

| I'(4) I'(244)(244) ['(4) I'(244)I'(2+4)
Pilgr) = (rimy rarors) (i —rarees)

r(448) T(2)r(2) I'(448) T(2)r(2)
= 0(4.6851x107°)
Using Bayes’ theorem,

P(gp,|d) = 0.94366

P(gp,|d) =0.05134
Hence gp, is more probable.



Q2. Suppose for the same potential graph models gp, and gp, as given in the
previous example the observed data is the following:

Case | X; | X5
1 1 1
2 1 1
3 1 2
4 1 2
5 2 1
6 2 1
7 2 2
8 2 2

Find the probabilities of these DAG’s occurring given the above mentioned data.
Also, prior beliefs for both of these graphs are equal.



Ans.

| N " T(4) T(244)1(244) I'2) I(142)0(142) I'2) T(142)T(142)
Pldlgp) = (l‘[-l-fm rR)T() )(rrz-..n F(L)I(T) )(rrz.u F(T(1) )

a(2.4050x107°)

, [(4) D4)T244)) (_T(4) TR44)0(244)
) cain s \ /LR
Pldgp,) = (mm rR)Ie) )(rr_m; TRT) )

= 0(4.6851x107°)
Using Bayes’ theorem,

P(gp,|d) = 0.33921

P(gp,|d) = 0.66079

Hence gp, is more probable.



THANK YOU!



